3.380 \(\int \cot ^3(e+f x) \sqrt{a+b \sec ^2(e+f x)} \, dx\)

Optimal. Leaf size=109 \[ -\frac{\cot ^2(e+f x) \sqrt{a+b \sec ^2(e+f x)}}{2 f}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a}}\right )}{f}+\frac{(2 a+b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a+b}}\right )}{2 f \sqrt{a+b}} \]

[Out]

-((Sqrt[a]*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]])/f) + ((2*a + b)*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqr
t[a + b]])/(2*Sqrt[a + b]*f) - (Cot[e + f*x]^2*Sqrt[a + b*Sec[e + f*x]^2])/(2*f)

________________________________________________________________________________________

Rubi [A]  time = 0.148657, antiderivative size = 109, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {4139, 446, 99, 156, 63, 208} \[ -\frac{\cot ^2(e+f x) \sqrt{a+b \sec ^2(e+f x)}}{2 f}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a}}\right )}{f}+\frac{(2 a+b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a+b}}\right )}{2 f \sqrt{a+b}} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^3*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-((Sqrt[a]*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]])/f) + ((2*a + b)*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqr
t[a + b]])/(2*Sqrt[a + b]*f) - (Cot[e + f*x]^2*Sqrt[a + b*Sec[e + f*x]^2])/(2*f)

Rule 4139

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Sec[e + f*x], x]}, Dist[1/f, Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^n)^p)/x
, x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ[
n, 2] || EqQ[n, 4] || IGtQ[p, 0] || IntegersQ[2*n, p])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[1/((m + 1)*(b*e - a*f)), Int[(a +
b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \cot ^3(e+f x) \sqrt{a+b \sec ^2(e+f x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{x \left (-1+x^2\right )^2} \, dx,x,\sec (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a+b x}}{(-1+x)^2 x} \, dx,x,\sec ^2(e+f x)\right )}{2 f}\\ &=-\frac{\cot ^2(e+f x) \sqrt{a+b \sec ^2(e+f x)}}{2 f}+\frac{\operatorname{Subst}\left (\int \frac{-a-\frac{b x}{2}}{(-1+x) x \sqrt{a+b x}} \, dx,x,\sec ^2(e+f x)\right )}{2 f}\\ &=-\frac{\cot ^2(e+f x) \sqrt{a+b \sec ^2(e+f x)}}{2 f}+\frac{a \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\sec ^2(e+f x)\right )}{2 f}-\frac{(2 a+b) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+b x}} \, dx,x,\sec ^2(e+f x)\right )}{4 f}\\ &=-\frac{\cot ^2(e+f x) \sqrt{a+b \sec ^2(e+f x)}}{2 f}+\frac{a \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sec ^2(e+f x)}\right )}{b f}-\frac{(2 a+b) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sec ^2(e+f x)}\right )}{2 b f}\\ &=-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a}}\right )}{f}+\frac{(2 a+b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a+b}}\right )}{2 \sqrt{a+b} f}-\frac{\cot ^2(e+f x) \sqrt{a+b \sec ^2(e+f x)}}{2 f}\\ \end{align*}

Mathematica [C]  time = 6.13886, size = 527, normalized size = 4.83 \[ \frac{e^{i (e+f x)} \cos (e+f x) \sqrt{4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \left (\frac{1+e^{2 i (e+f x)}}{\left (-1+e^{2 i (e+f x)}\right )^2}-\frac{(2 a+b) \log \left (1-e^{2 i (e+f x)}\right )+\sqrt{a} \sqrt{a+b} \log \left (\sqrt{a} \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}+a e^{2 i (e+f x)}+a+2 b\right )+\sqrt{a} \sqrt{a+b} \log \left (\sqrt{a} \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}+a e^{2 i (e+f x)}+a+2 b e^{2 i (e+f x)}\right )-2 a \log \left (\sqrt{a+b} \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}+a e^{2 i (e+f x)}+a+b e^{2 i (e+f x)}+b\right )-b \log \left (\sqrt{a+b} \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}+a e^{2 i (e+f x)}+a+b e^{2 i (e+f x)}+b\right )-2 i \sqrt{a} f x \sqrt{a+b}}{\sqrt{a+b} \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}}\right ) \sqrt{a+b \sec ^2(e+f x)}}{\sqrt{2} f \sqrt{a \cos (2 e+2 f x)+a+2 b}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cot[e + f*x]^3*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

(E^(I*(e + f*x))*Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + f*x))]*Cos[e + f*x]*((1 + E^((2*I)*(
e + f*x)))/(-1 + E^((2*I)*(e + f*x)))^2 - ((-2*I)*Sqrt[a]*Sqrt[a + b]*f*x + (2*a + b)*Log[1 - E^((2*I)*(e + f*
x))] + Sqrt[a]*Sqrt[a + b]*Log[a + 2*b + a*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 +
 E^((2*I)*(e + f*x)))^2]] + Sqrt[a]*Sqrt[a + b]*Log[a + a*E^((2*I)*(e + f*x)) + 2*b*E^((2*I)*(e + f*x)) + Sqrt
[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] - 2*a*Log[a + b + a*E^((2*I)*(e + f*x)) + b
*E^((2*I)*(e + f*x)) + Sqrt[a + b]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] - b*Log[a +
b + a*E^((2*I)*(e + f*x)) + b*E^((2*I)*(e + f*x)) + Sqrt[a + b]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)
*(e + f*x)))^2]])/(Sqrt[a + b]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]))*Sqrt[a + b*Sec[
e + f*x]^2])/(Sqrt[2]*f*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]])

________________________________________________________________________________________

Maple [B]  time = 0.454, size = 2528, normalized size = 23.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

1/8/f/(a+b)^(5/2)*(-1+cos(f*x+e))*(4*4^(1/2)*ln(4*cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^(1/
2)+4*a*cos(f*x+e)+4*a^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2))*(a+b)^(3/2)*a^(3/2)-2*cos(f*x+e)^2*4^
(1/2)*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*
cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^3-cos(f*x+e)^2*4^(1/2)*l
n(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x
+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*b^3+2*cos(f*x+e)^2*4^(1/2)*ln(-4*
(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*
x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))*a^3+cos(f*x+e)^2*4^(1/2)*ln(-4*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/
(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-
1+cos(f*x+e)))*b^3-4*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*4^(1/2)*(a+b)^(3/2)*b+5*4^(1/2)*ln(-2/(a+b)^(
1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*co
s(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^2*b-4*cos(f*x+e)^2*4^(1/2)*ln(4*cos(f*x+e)*
((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^(1/2)+4*a*cos(f*x+e)+4*a^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e)
)^2)^(1/2))*(a+b)^(3/2)*a^(1/2)*b+4*4^(1/2)*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/
(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/si
n(f*x+e)^2)*a*b^2-5*4^(1/2)*ln(-4*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos(f*
x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))*a^2*b-4*4^(1/2)*ln(-4*(cos(f*
x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2
)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))*a*b^2-5*cos(f*x+e)^2*4^(1/2)*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*
x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2
)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^2*b-4*cos(f*x+e)^2*4^(1/2)*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e
)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(
1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a*b^2+5*cos(f*x+e)^2*4^(1/2)*ln(-4*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*
x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x
+e)))*a^2*b+4*cos(f*x+e)^2*4^(1/2)*ln(-4*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a
*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))*a*b^2+4*4^(1/2)*ln(4*c
os(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^(1/2)+4*a*cos(f*x+e)+4*a^(1/2)*((b+a*cos(f*x+e)^2)/(1+
cos(f*x+e))^2)^(1/2))*(a+b)^(3/2)*a^(1/2)*b+8*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(3/2)*(a+b)^(3/2)-2*cos(f*
x+e)^2*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*4^(1/2)*(a+b)^(3/2)*a+2*cos(f*x+e)^2*((b+a*cos(f*x+e)^2)/(1
+cos(f*x+e))^2)^(1/2)*4^(1/2)*(a+b)^(3/2)*b+2*cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*4^(1/2)*(
a+b)^(3/2)*a+2*cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*4^(1/2)*(a+b)^(3/2)*b-4*cos(f*x+e)^2*4^(
1/2)*ln(4*cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^(1/2)+4*a*cos(f*x+e)+4*a^(1/2)*((b+a*cos(f*
x+e)^2)/(1+cos(f*x+e))^2)^(1/2))*(a+b)^(3/2)*a^(3/2)+8*cos(f*x+e)^2*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(3/2
)*(a+b)^(3/2)+16*cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(3/2)*(a+b)^(3/2)+2*4^(1/2)*ln(-2/(a+b)^(1/2
)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f
*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^3+4^(1/2)*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(c
os(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+
e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*b^3-2*4^(1/2)*ln(-4*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2
)^(1/2)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))*a
^3-4^(1/2)*ln(-4*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*
x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))*b^3)*cos(f*x+e)*((b+a*cos(f*x+e)^2)/cos(f*x+e)
^2)^(1/2)/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)/sin(f*x+e)^4

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (f x + e\right )^{2} + a} \cot \left (f x + e\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*cot(f*x + e)^3, x)

________________________________________________________________________________________

Fricas [B]  time = 1.68552, size = 3353, normalized size = 30.76 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(4*(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)^2 + ((a + b)*cos(f*x + e)^2 - a - b)*
sqrt(a)*log(128*a^4*cos(f*x + e)^8 + 256*a^3*b*cos(f*x + e)^6 + 160*a^2*b^2*cos(f*x + e)^4 + 32*a*b^3*cos(f*x
+ e)^2 + b^4 - 8*(16*a^3*cos(f*x + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 10*a*b^2*cos(f*x + e)^4 + b^3*cos(f*x + e)
^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)) + ((2*a + b)*cos(f*x + e)^2 - 2*a - b)*sqrt(a + b)*lo
g(2*((8*a^2 + 8*a*b + b^2)*cos(f*x + e)^4 + 2*(4*a*b + 3*b^2)*cos(f*x + e)^2 + b^2 + 4*((2*a + b)*cos(f*x + e)
^4 + b*cos(f*x + e)^2)*sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(cos(f*x + e)^4 - 2*cos(f*x +
e)^2 + 1)))/((a + b)*f*cos(f*x + e)^2 - (a + b)*f), 1/8*(4*(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)
*cos(f*x + e)^2 - 2*((2*a + b)*cos(f*x + e)^2 - 2*a - b)*sqrt(-a - b)*arctan(1/2*((2*a + b)*cos(f*x + e)^2 + b
)*sqrt(-a - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a^2 + a*b)*cos(f*x + e)^2 + a*b + b^2)) + ((a + b
)*cos(f*x + e)^2 - a - b)*sqrt(a)*log(128*a^4*cos(f*x + e)^8 + 256*a^3*b*cos(f*x + e)^6 + 160*a^2*b^2*cos(f*x
+ e)^4 + 32*a*b^3*cos(f*x + e)^2 + b^4 - 8*(16*a^3*cos(f*x + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 10*a*b^2*cos(f*x
 + e)^4 + b^3*cos(f*x + e)^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)))/((a + b)*f*cos(f*x + e)^2
- (a + b)*f), 1/8*(4*(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)^2 + 2*((a + b)*cos(f*x +
 e)^2 - a - b)*sqrt(-a)*arctan(1/4*(8*a^2*cos(f*x + e)^4 + 8*a*b*cos(f*x + e)^2 + b^2)*sqrt(-a)*sqrt((a*cos(f*
x + e)^2 + b)/cos(f*x + e)^2)/(2*a^3*cos(f*x + e)^4 + 3*a^2*b*cos(f*x + e)^2 + a*b^2)) + ((2*a + b)*cos(f*x +
e)^2 - 2*a - b)*sqrt(a + b)*log(2*((8*a^2 + 8*a*b + b^2)*cos(f*x + e)^4 + 2*(4*a*b + 3*b^2)*cos(f*x + e)^2 + b
^2 + 4*((2*a + b)*cos(f*x + e)^4 + b*cos(f*x + e)^2)*sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/
(cos(f*x + e)^4 - 2*cos(f*x + e)^2 + 1)))/((a + b)*f*cos(f*x + e)^2 - (a + b)*f), 1/4*(2*(a + b)*sqrt((a*cos(f
*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)^2 + ((a + b)*cos(f*x + e)^2 - a - b)*sqrt(-a)*arctan(1/4*(8*a^2*co
s(f*x + e)^4 + 8*a*b*cos(f*x + e)^2 + b^2)*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/(2*a^3*cos(f*x
 + e)^4 + 3*a^2*b*cos(f*x + e)^2 + a*b^2)) - ((2*a + b)*cos(f*x + e)^2 - 2*a - b)*sqrt(-a - b)*arctan(1/2*((2*
a + b)*cos(f*x + e)^2 + b)*sqrt(-a - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a^2 + a*b)*cos(f*x + e)^
2 + a*b + b^2)))/((a + b)*f*cos(f*x + e)^2 - (a + b)*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \sec ^{2}{\left (e + f x \right )}} \cot ^{3}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**3*(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(e + f*x)**2)*cot(e + f*x)**3, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (f x + e\right )^{2} + a} \cot \left (f x + e\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*cot(f*x + e)^3, x)